ome

金沙9570登录入口|首頁_歡迎您

07-06【林亚南】管研楼1318 吴文俊数学重点实验室代数学系列报告之204

发布者:卢珊珊发布时间:2022-06-27浏览次数:10

题目:Derived equivalences between one-branch extensions of “rectangles”

报告人:林亚南 教授, 厦门大学


时间:2022年7月6日(星期三)下午16:30-17:30

地点:东区管理科研楼1318教室

    

摘要:In this talk,we investigate the incidence algebras arising from one-branch extensions of “rectangles”. There are four different ways to form such extensions, and all four kinds of incidence algebras turn out to be derived equivalent. We provide realizations for all of them by tilting complexes in a Nakayama algebra. As an application, we obtain the explicit formulas of the Coxeter polynomials for a half of Nakayama algebras (i.e., the Nakayama algebras N(n,r) with 2r\geq n+2). Meanwhile, an unexpected derived equivalence between Nakayama algebras N(2r-1,r) and N(2r-1,r+1) has been found. This is the joint work with Qiang Dong and Shiquan Ruan.


报告人简介:林亚南,厦门大学“陈景润数学特聘教授”,博士生导师,国家万人计划领军人才,荣获教育部教学名师奖。教育部数学专业教学指导委员会成员,教育部大学数学课程教学指导委员会成员,高校大学数学教学研究与发展中心学术委员会成员。国家精品课程、国家优秀资源共享课程、国家线上一流课程《高等代数》负责人。主要研究代数表示论,在Bocs理论以及Hall代数等方面做出重要贡献,相关论文发表在Adv. Math., JLMS, J. Algebra以及Math. Z.等国际著名期刊上。任《数学研究》以及《数学文化》编委。